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The small parameter method has been widely used recently to solve a number of complex 
elastic-plastic problems. In this method one starts from a known analytic solution of sim- 
pler (plane, axisymmetric, centrally symmetric) problems, and by eliminating some small quan- 
tities seeks solutions close to these known states. Many such problems are presented in [I]. 
However, this method has not been widely used in the theory of creep, because of the lack of 
exact analytic solutions of even the simplest problems. An exception is the case of steady 
creep, when elastic deformations are negligible, and the creep flow rates are determined only 
by the stress state, and do not depend on the loading history [2]. Solving problems by this 
scheme is equivalent to using the equations of physically nonlinear elasticity. Some of 
these problems were also treated in [i]. Taking account of elastic deformations and the load- 
ing history leads to such complications that analytic solutions cannot be obtained. There- 
fore, such problems are solved by well-known numerical methods (finite differences, finite 
elements). However, the use of these methods involves considerable difficulties in the de- 
bugging of programs, and a large volume of computations. On the other hand, these problems 
can be solved by the small parameter method involving very simple numerical procedures on a 
computer (e.g., the evaluation of certain integrals). 

As an example, let us consider the problem of the deformation of an initially unstressed 
cylindrical tube with inside and outside radii R, and R2 for plane strain and the following 
boundary conditions: 

qr(R1)  = o re (R1  ) = 0, ~r(R~) = P ( l  - -  6 cos  20) ,  ore(R=) = P ~  s i n  2e ,  

where o r and Ore are the radial and tangential stresses, P and 6 are constants (0 < ~ < i), 
and 8 is the angle in a polar coordinate system~ We note that as R2 § ~ these conditions 
correspond to the extension of an infinite plane with a circular hole, which is free of loads, 
by two perpendicular forces applied at infinity [I]o We assume that the material of the tube 
is isotropic, viscoelastic, and incompressible with respect to both elastic and viscous 
strains, and we write the strain tensor as the sum of the elastic strain and creep flow ten- 
sors. As a result we obtain [I] 

3 ~ c 3 p r 
eo = -- e~ = T-E H- se, e~e = T ~- + e~o, (1) 

c c 
where u = o 8 -- Or; v = 2ar8 ; o 8 is the circumferential stress, e e and er8 are the circumfer- 
ential and tangential creep flow components, and E is Young's modulus. For simplicity, we 
assume that the components of the strain rate are determined solely by the stress components, 
and are power functions of them [i, 2]: 

ne ~ =  B (u" + v ~) ~ u, n~e=  ~ e =  + (2) 

where B and n are creep constants. 

We choose 6 as the small parameter. Henceforth, we refer all the stress components to P, 
and the strain components to (3/4)P/E, retaining their previous notation, and introduce the 
dimensionless radius r, referred to R2. 

We consider the zero approximation, corresponding to the axisymmetric state of the tube 
for 6 = 0. We assume that at time t = 0 the creep flows are zero. Clearly in this case 
o$~ ): = 0. The computational procedure consists in the following [3]. We assume that at the 

(o)c 0 _(o)C along the radius r is known (at t = 0, e 8 time t k the distribution of creep flow ~0 = 
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everywhere in the tube). It follows from the conditions of plane strain and incompressibil- 

ity that s~ ~ = u (~ e(e ~ =-T,A* from which u (~ =--At --e~0 ~ where A~ : const From the 
r r ~ " 

equation of equilibrium Or(~ = u(~ (from now on a prime denotes differentiation with re- 
spect to the coordinate r) we obtain 

where a = Rz/R~, from which 

o., .  [ 4  ~176 2r= " - - 7 -  dr - A~' (3) 

C Q~o 
A~ __ e~eo)~ __ J - 7 - -  dr + As. (4) 

The constants A, and A~ are determined from the boundary conditions Or(~ = 0, Or (~ (i) = I: 

(' ) (5) 

Assuming that the state of stress (3)-(5) does not change during the time At, we find the dis- 
tribution of the strain E8 c at time tk+,=tk-~At:e~)c(t~+z)=e~)c(t~) e~)~(t~)At, where e~)~ is 
found from (2). The computational procedure is repeated~ Thus, at any time the distributions 
of Or(~ ~8(~ and eS(~ along the radius r will be known in the zero approximation. The 
required stresses are written as series in the parameter ~: 

~, d2 + ~$~) + 8b$ ~) + . . . ,  
. , = ~(1). , ^3 (2) __ ( 6 )  

a0 = ~o~ + 8a~,~ + 8~o~ = . . . ,  ,~,o ,,,,to -~  o o,o -r- . . . .  

Then, on the basis of (i), (2), and (6), we obtain for the first approximation of the strains 

~(i)= _(I) : .v(i) Jl)r Q )  = U~ ~ + ':e , ~,'0 + o,'O , ( 7 )  

where the creep flow rates are determined in the following way: 

~t)= = Anu(~149 ~rO:(1)r ----. xxu,A" (0)n--lv(1)l. ,. A = EBP "~-1. ( 8 )  

In any approximation it is necessary to satisfy the equilibrium equations [i] 

i_O%e o%. o to% 2%e 
a%.~.r + ~ - O 0  + %--aOr = O, ""~"~'r"-~" -}- r ----0 (9 )  

and the equation of compatibility of strains,-which in the case under consideration of an in- 
compressible medium under plane strain takes the form 

088 
r ~ O~e--2+ 3 r  - -  

Or 2 ar 

E l i m i n a t i n g  (o  r + o 8 ) / 2  f r o m  ( 9 ) ,  we h a v e  

aO 2 2 q- r-TT~- ].  

r ~ ~ = 2 (  H- ~r 2 + 3 r  ~-~ a~v ou O2u) -- -~ - ~- ro-~). 

We seek the solution in the form 

O) (r, t) cos 28, ~(o i) ~) cos 20, _(o _(i) t) ~r i) = o~i = orO = uro1 (r, sin 20. 

Then, for the creep flows in the first approximation we obtain 

~a)c e (1)c" t) sin 20~ _(1)e $~ll )a (r, t) cos 20, ~ o  = ,ol (r, 

u~ ~) = u (~) cos 20, v~ ~) = v (1) sin 20. 

(io) 

(li) 

(12) 

(13) 
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Substituting (12) and (13) into (i0) and (ii), and taking account of (7), we find 

r'uO)" + 3ruCt)' + 4u(i) - -  4v(~) - -  4rvCi)' = ](r, t),  ( 14 )  

r2~ tY' -@ 3 rvm '  + 4vO) - -  4uCn - -  4ruO)'  = O, 

/.,O)c _.(~)c'~ __ r~e(o~)C' ~ ( l l C  o_^O)c' where ] ( r , t ) = 4 ~ r 0 t + ~ 0 ~  ) --'~0~ --~ �9 

We note that the quantities u(x) and v(t) appearing in (14) depend on r and t only. 

We assume that at time t~ the distribution o~ ~he strains e0(x)c and ~r~ (~)c along the 
radius of the tube is known (at t = 0 e0(~)c - gr (~)c = 0). Integrating system (14) and per- 

0 
forming some simple but rather tedious transformations, we obtain 

/ te l)  F ( 1 )  (I)(1) -6 2C(~ 0 q 2C(~')F " -t- ~ ~ " , = _ 2 c a ) r - ,  _ 2cm. -~  

v(1) ---- ~ ( ' )  + 2c(, ~) + 2c(~ ')r2 - -  2c(1)r-a3 -}- ~c," (')r-~, 

w h e r e .  F (t) (r) = 4r  2 t ~ tO1 O~ "-~ ~ 7 ~ dr dr + .  -~f dr - - e ~ t ;  
(z 

( . 1 5 )  

Ii )] q b(l) (r) =- ~ rF  (r) dr -- 3 raF (r) dr dr . 
r" t . ' ~  

T h e  c o n s t a n t s  c ~ ( X ) ,  c 2 ( ~ ) ,  c3(X~ a n d  c a (  a ) a r e  d e t e r m i n e d  f r o m  t h e  b o u n d a r y  c o n d i t i o n s ,  
w h i c h  i n  t h e  p r e s e n t  c a s e  h a v e  t h e  f o r m  

o(,) ~.(1) _ c ~ 1 )  c~,)r_4 _}_ 2c(4~)r_~, ( 1 6 )  

_ c(1)r -~- o(o~ ) = o(~ ) + u('), ~rot~(') = r -}- c(, ') + c$ c(a Or- '  -t- , , 

where II'(1)(r)= i F(i)(r)7--20(1)(r) dr. 

~, (~) = ~ o ~  ( ~ )  = o ,  . ( i )  = - t ,  u ~ o , ( l )  = i .  

Assuming that the stress state (15), (16) does not change during the time At, we find from 
(8) the distribution of creep flows at the time th+1--_th~-At: e~1)c(tk+1)=e(01)c(tk)+e~1~(t;)At, 

g')~" ~ g~)~ re t~J,+,z = er0 (t~)At. The computational procedure is then repeated. 

By using a method analogous to that described in [I], and making some simple transforma- 
tions, the second approximation for the strains can be obtained in the form 

'e(o 2) u(~) + e(o 2}~, (3) v(2) ~(~)c = I~rO = + ~o  , (17) 

where the creep flow rates are determined in the following way: 

~(o2)e ___ Anu(O)n_Zu(2 ) + A ( n  --1)lt(O)n_2 [nu(l) 2 _}_ 0(I) 2 
4 (18) 

q- (nu(')~ -- v(t)2) cos 40], :(~)c A (n -- I) u(O),~_~uCt)u(1) s in  40. ~rO ~ 9. 

Taking account of (17) and (18), we seek the solution for the second approximation in the 
form of a sum of axisy~netric and nonaxisymmetric states: 

(r~r ') (~(r~) (r ,  t) - -  (3) (r, t) 40, (r~ z) o ~  ) (r,  t) - -  (e) ( r ,  t) cos 40, ----- ~ O r l l  COS ~'. "I- I JOl l  

0(3) -(~) " t) sin 40, e(o ~) = e(~ ) (r, t) -6 ~:(~)~ (r, t) cos 40, ~ _is) , .  t) sin 40 rO -~- OrOl  (r, erO ~ ~rO I, tT 

for the following boundary conditions: o~)= om=urm=.(3) _(2) n (r = a and r = I). Skipping the 
tedious calculations, we present the final formulas for the second-approximation stresses 
analogous to (3)-(5) and (15), (16): 

1 dr -- dr, 
,,~(2) ~ . ~ r "~ d v r l  t -- C~ 2 \05"-" r ot 
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o t  d r  (2)c 

o(,) ~t(~) ~_ c~)r2 ep)r~ c(,)r_6 3 (2)r_ 4 rtl ----- - -  - -  3 -~- " T  c2 ' 

a(2) t r e~,)r~ + c(2)r4 c~)r_6 + c(42)r_4 . o l  = -y- + 

r , r ( 2 ) e  o ( ~ ) e  ~176 dr - -  f 1 8 r O 1 -  ~rO1 .,(2)c. 
F ( * ) ( r ) = s r  a 3 3 - 7 \ j  -7 ~~  dr + --  ~on, 

(19) 

~D r (r) = - - - ~  5 -~t - g  rSf(~) (r) dr - -  a raf(2) (r) dr ; ~F(~) (r) = ~ F(~') (r) -~ 30(~) (r) dr. 

The constants c2 (2), am(U), cs(U), and c4 (2) are found from the boundary conditions indi- 
cated. Subsequent approximations can be obtained in a similar way. 

The following values of the constants were assumed in the calculation: A = EBP n-z = 
0.827 h -z, n = ~, ~ = Ooi, ~ = 0.08, At = 0.08 h. All the integrals appearing in (3)-(5), 
(16), (15), and (19) were evaluated by using Simpson's rule. The number of division points 
along the radius set equal to i00, i.e., the integration step Ar = 0.009. The results of the 
calculation are shown in Figs. 1-5. 
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Thus, Figs. i-3 show the stresses ~e, ar, and are at the various times indicated by the 
numbers on the curves for e = ~/4. Figures 4 and 5 show the stress ~e at times 0 and 80 h 
for e = 0, ~/4, and ~/2. It can be seen from Figs. 1-3 that the most intense redistributions 
of the stresses ~e and Ore occur at e@rly times (0-32 h) near the inside opening of the tube. 
It can be seen from Figs. 4 and 5 that in the course of time the redistributions of the 
stress o 6 for various values of the angle e approach one another. 

Calculation shows that taking account of the second approximation leaves the stress dis- 
tribution and redistribution patterns practically unchanged; the maximum relative error in 
the stresses between the first and second approximations does not exceed 0.2%. 

In the example considered above a quantity characterizing the perturbation of the bound- 
ary conditions in stresses was taken as the small parameter~ It is clearly possible to con- 
sider the perturbation of geometrical boundary conditions and also both simultaneously. This 
permits the solution of a rather large class of problems analogous to those treated in [i] in 
the elastic--plastic formulation. Solution (3)-(5) must be taken as a basis for the stresses 
corresponding to an axisymmetric state. 
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